
Advanced (Quasi)-Monte 
Carlo Methods for Image 

Synthesis
Siggraph 2012 Course

 

 
  

PRESENTERS

  Leonhard Grünschloß
Weta Digital

Alexander Keller
NVIDIA ARC GmbH

Simon Premože
Double Negative

Matthias Raab
NVIDIA ARC GmbH

Image courtesy Delta Tracing with NVIDIA iray.



COURSE DESCRIPTION

Monte Carlo ray tracing has become ubiquitous in most commercial renderers and in 
custom shaders used for visual effects and feature animation. However, many advanced 
Monte Carlo algorithms are not widely used and are often misunderstood. Course attendees 
will learn about the practical aspects of variance reduction methods with a focus on all 
variants of importance sampling. The course also covers quasi-Monte Carlo methods at 
industry level, as well as the practical aspects of bidirectional path tracing combined with 
multiple importance sampling and Metropolis Light Transport. The audience will benefit 
from the intuition provided by the practical advice throughout the course.
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COURSE LENGTH
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Abstract

Monte Carlo ray tracing has become ubiquitous in most commercial renderers and in
custom shaders used for visual effects and feature animation. However, many advanced
Monte Carlo algorithms are not widely used and are often misunderstood. Course at-
tendees learn about variance reduction methods ranging from importance sampling
and its derivatives to control variates and correlated sampling. Audience also learns
about Quasi Monte Carlo methods, deterministic pseudo-random number generation
and how to correctly incorporate them into a raytracer. Last part of the course is de-
voted to advanced algorithms such as bidirectional path tracing and Metropolis Light
Transport with special emphasis on how to implement these algorithms in practice.
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1 Introduction to Monte Carlo Methods

1.1 Monte Carlo Methods
The term Monte  Carlo refers to all methods that use a statistical sampling processes
to approximate solutions to quantitative problems. It can be used for a wide variety
of probabilistic problems ranging from numerical integration to optimization. These
methods are used in many application domains such as economics, robotics and nuclear
engineering.

In this section, we describe some basic concepts of Monte Carlo integration. After a
brief overview of the Monte Carlo methods, we introduce the principle of Monte Carlo
integration and look at some of the basic statistical properties. Then, we describe some
basic variance reduction techniques, such as importance sampling, control variates, and
mixture sampling, that we use in later sections in the context of light transport. This
section is only a brief summary, but it does provide some insights and intuition about
why some methods perform better than other and describes the circumstances one
should use a particular method. We encourage interested readers to learn more about
Monte Carlo methods and probability in many excellent books [10, 16, 7] and papers
that exist on the topic.

Readers who are mostly interested in the practical implementation Monte Carlo
methods for rendering can skip this section.

1.1.1 Estimators
A continuous  random  variable X is a quantity that randomly takes on a value x that
lies on the real line (−∞,∞). The values of x can be quantitatively described by the
probability density function (PDF) p. The probability that x will take a value on some
interval between a and b is then

Pr{a ≤ X ≤ b} =

∫ b

a

p(x)dx. (1.1)

The probability density function p(x) must satisfy two conditions:

1. It is always positive:
p(x) ≥ 0

2. It is normalized: ∫ ∞

−∞
p(x)dx = 1
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1 Introduction to Monte Carlo Methods 1.1 Monte Carlo Methods

It is important to understand the difference between probability and the probabil-
ity density function. The probability, or likelihood, of an event takes values strictly
between 0 (impossible  event, it never happens) and 1 (certain  event, it always occurs).
On the other hand, the probability density function describes the relative likelihood
of a random variable (or event) having a certain value. For instance, if p(x1) = 10 and
p(x2) = 100, then the random variable with the PDF p is ten times more likely to have
a value near x1 than near x2. The relationship between the probability density function
p and the probability Pr is defined in Equation (1.1).

Other important concepts to understand are expected value and variance of a random
variable. The expectation (or expected value) of a random variable Y = f(X) is

E[Y ] =

∫
Ω

f(x)p(x)dx (1.2)

and its variance is
V [Y ] = E[(Y − E[Y ])2]. (1.3)

Intuitively, expected value (or mean  value) is just the average value of the random vari-
able. Note that expected value should not be confused with the most probable value.
On the other hand, variance measures how much the values of some random variable
deviate from its mean or expected value. The higher the variance, the more values differ
from the average value.

The expected value has a few useful properties:

1. The expected value of the sum of two random variables X and Y is the sum of
the expected values of those variables:

E[X + Y ] = E[X] + E[Y ]

Since functions of random variables are also random variables, this principle ap-
plies to the sum of functions of random variables:

E[f(X) + g(Y )] = E[f(X)] + E[g(Y )]

The above holds true even if variables X and Y are correlated.

2. For any constant a, the expected value and variance for aX are

E[aY ] = aE[Y ]

V [aY ] = a2V [Y ]

If we want to compute an approximation to some unknown quantity Q (i.e.the esti-
mand or quantity of interest), a function F of random variables X1, . . . , XN is called an
estimator if its mean (expected value) E[F ] is a usable approximation to Q:

FN = FN(X1, . . . , XN) (1.4)

5



1 Introduction to Monte Carlo Methods 1.1 Monte Carlo Methods

A particular numerical value of FN is called an estimate. Q can be any function that we
might be interested in. In rendering, Q can be the amount of light that reaches a point
on a surface or the amount of light reflected from the surface.

There are many possible estimators. In general, we want Monte Carlo estimators to
provide good estimates as fast as possible. How do we choose a good estimator?
First, we need to establish some criteria for what good means by looking at the proper-
ties of Monte Carlo estimators:

• Error

error = FN −Q

Mean Square Error (MSE) of an estimator F is then

MSE = E[(FN −Q)2] (1.5)

• Bias
Bias β is the expected value of the error:

β[FN ] = E[FN −Q] (1.6)

The estimator is unbiased if β[FN ] = 0 for sample size N :

E[FN ] = Q for allN ≥ 1. (1.7)

An obvious advantage of the unbiased estimator is that we are guaranteed to get
the correct value of quantity of interest Q if enough samples are taken. Further-
more, the expected value of an unbiased estimator will be the correct value after
any number of samples. The mean square error of the estimator can be also writ-
ten as

MSE[FN ] = V [FN ] + β[FN ]
2. (1.8)

For unbiased estimators, the MSE is the same as the variance. For biased estima-
tors, the error is much more difficult to estimate. It is also important to know
that a biased estimator may not give a correct estimate for Q even if an infinite
number of samples are taken. In practice, a biased estimator may have some de-
sirable properties, such as lower variance, which makes it very appealing for use
in computer graphics. For example, in rendering, noise is a manifestation of vari-
ance. While taking more samples reduces the amount of noise, rendering using
a biased estimator may have less noise for the same number of samples albeit
producing different images.

• Consistency
An estimator is consistent if the error goes to zero as the number of samples grows:

Pr{ lim
N→∞

FN = Q} = 1. (1.9)
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1 Introduction to Monte Carlo Methods 1.1 Monte Carlo Methods

The above equation is essentially saying that if we use a consistent estimator, we
are one hundred percent certain that the answer is correct if we increase the num-
ber of samples. Consistency is a stronger condition than requiring the estimator
to be unbiased. It is still possible that an unbiased estimator is not consistent,
in which case its variance is infinite. A biased estimator is consistent if its bias β
decreases to 0 as the number of samples N increases.

1.1.2 Monte Carlo Integration
The basic idea behind Monte Carlo integration is evaluation of the integral

I =

∫
Ω

f(x)dx (1.10)

using random sampling. Here, N random points X1, X2, . . . , XN are independently
sampled from some density function p and used to approximate I ,

ÎN =
1

N

N∑
i=1

f(Xi). (1.11)

Notation note: A realization of an estimator F , namely FN , is the same as ÎN. The
subscript N emphasizes that Î is still a random variable and therefore its properties
depend on how many samples were chosen.

As N increases, the expected error of this estimate decreases. We want to choose N

such that we have confidence that the estimate ÎN is good. The estimator ÎN is a crude
but unbiased estimator for I and its variance is

V [ÎN ] = V [
1

N

N∑
i=1

f(Xi)] =
1

N
V [f(X)]. (1.12)

From this variance estimate V [ÎN ] we can conclude the following:

1. The standard error of the estimator decreases with the square root of the sample
size N. Recall that the standard error of ÎN is V [ÎN ]

2, so while the variance of
the estimate is proportional to 1/N the standard deviation is proportional to
1/
√
N. Therefore, to reduce the error in half, we have to quadruple the number

of samples.

2. The statistical error is independent of the dimensionality of the integral. This
simply means that the computation does not increase exponentially when the
dimensionality of the integral increases.

So far, we have not made any assumptions about function f(x) we are trying to in-
tegrate. On the other hand, in the above discussion we have assumed that our random
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1 Introduction to Monte Carlo Methods 1.1 Monte Carlo Methods

variable X is uniformly distributed over the integration domain Ω. Loosely speaking, a
uniform distribution implies that the probability of choosing each sample is equal. Un-
fortunately, real problems are rarely this simple. For example, function f(x) can be zero
in many regions and have very high values in other. If uniformly sampling the domain
Ω, we may get very large variance. Also, sometimes it may not be possible to sample
a space uniformly. In order to alleviate these problems, we can rewrite the estimator
from Equation (1.11) as

I =

∫
Ω

f(x)dx

=

∫
Ω

f(x)

p(x)
p(x)dx,

where p(x) is a probability density function in Ω. We can now generate N samples from
distribution p(x) (instead of uniformly sampling Ω) to get

Îp =
1

N

N∑
i=1

f(Xi)

p(Xi)
. (1.13)

The simple Monte Carlo estimator was saw in Equation (1.11) is just a special case of
the more general estimator in Equation (1.13) with p(x) being a uniform distribution in
Ω. This estimator has the same variance properties we have seen above.

One major advantage of Monte Carlo integration is that it is easy to understand and
simple to use. If we can generate random samples using some density p(x) and have the
ability to compute the sample weights, wi =

f(Xi)
p(Xi)

, i = 1, . . . , N , then we can evaluate
the integral. Monte Carlo methods are also flexible, robust and work well in higher
dimensions where other numerical methods might fail.

1.1.3 Variance Reduction Techniques
One of the biggest disadvantages of Monte Carlo methods is a relatively slow conver-
gence rate. As we have already discussed above, the root mean square (RMS) error
converges slowly at a rate of O(1/

√
N), so we need to quadruple number of samples N

to halve the error.
Ideally, we would like to use an estimator which has both small variance and is com-

putationally efficient. Efficiency of a Monte Carlo estimator F is

ϵ[F ] =
1

V [F ]T [F ]
(1.14)

where V [F ] is the variance and T [F ] is the time needed to evaluate F . Therefore, the
more efficient the estimator is the lower the variance in a given (fixed) amount of time.

One of the fundamental goals in researching Monte Carlo methods is to find or design
efficient estimators. These techniques are often calledvariance  reduction  techniques and
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1 Introduction to Monte Carlo Methods 1.1 Monte Carlo Methods

include importance  sampling, control  variates, and adaptive  sampling. We briefly review
some of these techniques. In later sections, we apply these techniques to the direct
illumination rendering problem.

Importance Sampling

Recall that a Monte Carlo estimator for some function f(x) over domain Ω is

I =

∫
Ω

f(x)

p(x)
p(x)dx

and the estimator is

Îp =
1

N

N∑
i=1

f(Xi)

p(Xi)
.

The variance of the estimator Îp depends on the density p(x) from which random sam-
ples are drawn. If we choose the density p(x) intelligently, the variance of the estimator
is  reduced. This is called importance  sampling. p(x) is called the importance  density
and wi =

f(Xi)
p(Xi)

is the importance  weight.
The best possible sampling density is p∗(x) = cf(x) where c is proportionality con-

stant
c =

1∫
Ω
f(x)dx

. (1.15)

Here, the constant ensures that p∗ is normalized (i.e., it integrates to 1). The density
p∗(x) yields an estimator with zero variance. In practice, we cannot use this density,
because we must know the value of the integral we want to compute to evaluate c.
However, if we choose an importance density p(x) that has a similar shape to f(x), the
variance can be reduced. It is also important to choose an importance density p such
that it is simple and efficient to evaluate. In practice, p can be designed by doing some
of the following:

1. Discard or approximate some parts of f(x) such that function g(x) = f(x)p(x)
can be integrated analytically.

2. Construct a low dimensional discrete approximation of f(x).

3. Approximate f(x) by using Taylor expansion.
After g(x) is designed with any of the above methods, the density is then set to p(x) ∝
g(x). We show in next sections how to choose and compute densities in practice.
Note: If the sampling density is not chosen carefully, the variance can be increased and
can actually be infinite. Importance sampling is very effective when function f(x) has
large values on small portions of the domain. Another common problem that happens
in importance sampling is when the sampling density has a similar shape to f(x) except
that f(x) has longer (wider) tails. In this case, the variance can become infinite. While
importance sampling is a useful and powerful technique it should be used with care.
Inappropriate importance density can result in poor estimates of the integral.
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1 Introduction to Monte Carlo Methods 1.1 Monte Carlo Methods

Stratified Sampling

If we partition integration domain Ω into a set of m disjoint subspaces Ω1, . . . ,Ωm

(strata), we can evaluate the integral as a sum of integrals over the stratum Ωi. If we
generate ni samples in each stratum (subspace Ωi), the estimator becomes

Î =
m∑
i=1

1

ni

ni∑
k=1

f(Xi,k) (1.16)

whose variance is

V (Î) =
m∑
i=1

Vi

ni

(1.17)

where Vi is the variance of f(x) in stratum Ωi. The expected error of this method,
stratified sampling, is never higher than variance of ordinary unstratified sampling [14].
However, stratified sampling is often better than importance sampling. The two meth-
ods can be combined to lower variance even further. Stratified sampling works well for
low-dimensional integration, but it does not scale well for integrals of high dimension-
ality. The number of samples must also be chosen such that there is at least one sample
drawn from each stratum.

Control variates

If we can rewrite the estimator as

I =

∫
Ω

g(x)dx+

∫
Ω

(f(x)− g(x))dx (1.18)

where function g(x) can be analytically integrated and has the following property:

V [f(x)− g(x)] ≤ V [f(x)] (1.19)

then a new estimator is

F =

∫
Ω

g(x)dx+
1

N

N∑
i=1

f(Xi)− g(Xi)

p(Xi)
. (1.20)

The variance of this new estimator will be lower than the original estimator.

How do we decide whether to use importance sampling or control variates?
Given function g(x) that is an approximation of f(x), then g(x) can be used either as
an importance density or a control variate. If f(x) − g(x) is approximately uniform
(constant), then using g(x) as a control variate is more efficient. If f(x)/g(x) is approx-
imately constant, then using importance sampling is more efficient. Note that if g is
proportional to p then the two estimators differ only by a constant, and have there-
fore the same variance. If g is already used as the importance density, it would not be
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1 Introduction to Monte Carlo Methods 1.1 Monte Carlo Methods

useful as a control variate, because the variance would not be reduced. Another cri-
teria for choosing between importance sampling and control variates is whether g(x)
can be integrated analytically (control variates may be preferable) or g can be sampled
analytically (importance sampling).

Defensive importance sampling

We already mentioned in Section 1.1.3 that even if a sampling density p(x) has roughly
the same shape as a target function f(x), but f(x) has longer tails, importance sampling
will fail. When we draw a sample from the tails of p(x), the importance weight can be
many times larger than weights in other parts of p(x). This causes high variance and in
extreme cases the variance can be infinite. This deficiency can be address with defensive
importance  sampling [9] which uses a defensive  mixture  distributionpα(x) instead of only
the density p(x):

pα(x) = αq(x) + (1− α)p(x). (1.21)

Here, 0 < α < 1 and q(x) is the target distribution. If we want to compute the integral

I =

∫
Ω

f(x)q(x)dx (1.22)

where q(x) is the target density on the integration domain. The defensive mixture dis-
tribution pα(x) guarantees that the variance is bounded by 1/α times the variance of the
uniform distribution estimator. It also bounds the importance weight to 1/α. However,
oftentimes it may not be easy or possible to sample from the target density q(x). If q(x)
can be decomposed into a product of several (simpler) densities, q(x) = q1(x), . . . , qn(x)
and each qi(x) can be easily sampled, then a more general mixture distribution of m
densities can be used:

pα = α0p(x) +
m∑
j=1

αjqj(x). (1.23)

Here, the sum of all weights αj is one and each weight is greater than zero.

Multiple Importance Sampling

Many times we have to integrate a complex function whose target distribution has mul-
tiple modes (peaks or bright regions) and sampling with a single importance density may
not capture all regions of the integrand. For example, this is a very common problem
in rendering. If our scene contains diffuse and glossy surfaces illuminated by small and
large area lights, we face a difficult decision about what sampling strategy to use. For
diffuse surfaces, one sampling strategy might be preferable to another. However, the
opposite might be true for glossy surfaces.

Suppose that we have n different densities, p1(x), . . . , pn(x), and generate ni samples
for each pi(x). Now, we have many different sampling strategies that work well in dif-
ferent regions of the integrand, but are not good over the entire domain. The question

11



1 Introduction to Monte Carlo Methods 1.1 Monte Carlo Methods

is how to combine multiple strategies that minimize the overall variance without intro-
ducing bias. As a naïve approach, one could average the sampling strategies. However,
this will not produce optimal results [19].

Instead, we combine all n sampling strategies giving the estimator

F =
n∑

i=1

1

ni

ni∑
j=1

wi(Xi,j)
f(Xi,j)

pi(Xi,j)
(1.24)

where weightwi,w1, . . . , wn, provide weight for each sample drawn from some sampling
strategy pi. All weights must be non-zero and the total sum must be 1 to ensure that
the estimator remains unbiased. An obvious weighting function would be

wi(x) = ci
pi(x)

q(x)
(1.25)

where
q(x) = c1p1(x) + · · ·+ ckpk(x) (1.26)

and all coefficients ci are nonzero and sum to 1.
In general, the best choice of weights turns out to be

wi(x) =
nipi(x)∑
k nkpk(x)

. (1.27)

If we take exactly one sample, ni = 1 from each sampling density, the weight wi will be
set according to current sampling strategy at x compared to the rest of the strategies:

wi(x) =
nipi(x)∑
k nkpk(x)

. (1.28)

This weighting strategy is called the balance  heuristic and is nearly optimal. It is possible
to design better strategies for special cases, but universally the balance heuristic out
performs most other stratigies.

What is the difference between MIS and Defensive Importance Sampling?
Multiple importance sampling (MIS) is optimal for a given set of sampling strategies.
However, if we have chosen a bad or inadequate sampling strategy, MIS will not reduce
variance. For example, if one of the strategies takes too many samples from low-valued
regions and not enough from high-valued regions, the variance will increase. On the
other hand, defensive importance sampling (DIS) can improve variance when a sam-
pling strategy p is inadequate. When combined with a uniform density, DIS guarantees
that the integrand will be sampled over entire domain. MIS with balance heuristic can
be viewed as a special case of DIS (see Equation (1.21), and factorα coming from balance
heuristic weights).

We will show in later sections how to use MIS in practice and how to design sampling
strategies for rendering.
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1 Introduction to Monte Carlo Methods 1.2 Multiple Importance Sampling

1.2 Multiple Importance Sampling
Recall that one of the main objectives in rendering is to approximate the illumination
integral in Equation (??):

Lo(x, ωo) =

∫
Ω

Li(x, ωi)f(ωo, ωi) cos θidωi

which can be split into three components: incoming illumination Li, cosine weighted
BRDF B and visibility function V . If we drop the spatial and angular, the illumination
integral becomes

Lo =

∫
Ω

LiBV dωi (1.29)

and the traditional Monte Carlo estimator is

L̂o =
1

N

N∑
i=1

LiBV

p(ωi)
(1.30)

where p(ωi) is the importance sampling density. Ideally, the density function would be
proportional to the product of LBV . Unfortunately, this is impossible for all but some
artificially contrived scenes. We have to resort to some other density that will hopefully
generate low variance in estimate. Let us examine a few possible options.

When we have a diffuse BRDF and multiple area lights of different sizes, we have two
obvious choices for importance sampling densities. We can either sample according to
the diffuse BRDF or lighting. Figure 1.1 illustrates the two scenarios. Using the diffuse
BRDF, we sample the entire hemisphere, but only small portions of the hemisphere
contain any lighting. So, many samples are completely wasted since the contribution
will be zero. On the other hand, if we sample according to the lighting, none of the
samples will be wasted because for any direction in which light is emitted the BRDF
will reflect some light. For diffuse surfaces, it is better to sample according to lighting
only.

When we have glossy surfaces and many area lights, we can also sample according
to the glossy BRDF or lighting densities. Figure 1.2 shows two sampling scenarios. In
contrast to diffuse surfaces, glossy surfaces reflect light from a small solid angle. Using
light sampling densities, most of the samples will be wasted because the surface will
not reflect any light from those directions. Therefore, a better choice is to sample
according to the glossy surface reflection, because there is a much larger chance that
at least some sampled directions within a reflectance cone will have non-zero lighting
contributions.

When we have very glossy surfaces or diffuse only surfaces, the choice of sampling
densities is fairly obvious. As highly glossy surfaces become duller (more diffuse) the
choice becomes murkier and not straightforward. For slightly glossy surfaces, a combi-
nation of two sampling strategies should be used.

13
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Figure 1.1: Diffuse BRDF and area lights. When we have a diffuse BRDF and mul-
tiple area lights of different sizes, two obvious sampling density choices
are lighting (left) and BRDF (right). Note that BRDF sampling produces
many samples that will be wasted, because there is no light emission in
those directions. Sampling according to only the lighting produces lower
variance.
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Figure 1.2: Glossy (specular) BRDF and area lights. Lighting (left) or BRDF (right)
can be used as an importance sampling density. Note that light sampling
produces many wasted samples because there will be no reflection in those
directions. Sampling according to the BRDF provides better results.
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Figure 1.3: Diffuse BRDF and area lights with occluder. While sampling according to
lighting is still preferable, the occluder blocks many of the directions that
contribute light. Ideally, we would not pick directions that are blocked by
the occluder. Unfortunately, this cannot be easily achieved for arbitrary
scenes and geometry.
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So far, we have only looked at idealized situations where we have simple surfaces
(composed of simple BRDFs) and no occluders. This is obviously an unrealistic situ-
ation. As shown in Figure 1.3 for a diffuse only surface, once we add occluders to the
scene the sampling strategy becomes more complicated. Occluders can prevent light
reaching the surface. Sampling according to lighting will generate proper directions,
but lighting from those directions might be blocked. For the time being, we ignore vis-
ibility in our sampling density but we will return to it later and discuss what we could
do to incorporate visibility into the sampling density.

It is clear that complex lighting, surface properties, and occlusions cause the function
we want to approximate to be complex and discontinuous. This function can have many
bright and dark regions and intensities can differ by orders of magnitude. Since the
function is very complex and does not have a nice formulation (due to occlusion) it is
clear that either our sampling density will be complex or that we need more than one
sampling density.

Veach and Guibas [19] have demonstrated that by combining multiple sampling strate-
gies, the variance can be reduced in situations where a single sampling strategy is bad
(see Figure 1.4).

How do we implement Multiple Importance Sampling? Given the two sampling
strategies for lighting and BRDF discussed in Section ??, let p1(x) and p2(x) be a BRDF
and light sampling density. The random variables X and Y are then

X1,i ∼ p1(x) X2,i ∼ p2(x)

Y1,i =
f(X1,i)

p1(X1,i)
Y2,i =

f(X2,i)

p2(X2,i)
.

Now, we just need to combine the samples together:

Yi = w1Y1,i + w2Y2,i. (1.31)

The only remaining question is how to compute weights wi(x). We have already men-
tioned a few possible options in Section 1.1. One is using the balance heuristic, where
the weights are:

wi(x) =
pi(x)

p1(x) + p2(x)
(1.32)

and the final PDF p(x) for the combined sampling densities is:

p(x) = w1(x)p1(x) + w2(x)p2(x). (1.33)

Now, we have all the ingredients to implement multiple importance sampling.
One of the remaining questions is how do we choose the number of samples for each

sampling strategy. There are several possibilities:

• Select a fixed number of samples for each strategy. For example, if N = 100, then
N1 = 50 would be used for lighting sampling and N2 = 50 for BRDF sampling.
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Figure 1.4: Combining many sampling strategies using Multiple Importance Sampling
(MIS) produces superior results to using a single sampling density. Image
from Veach and Guibas [19].

Note that this is a relatively safe choice, although it could lead to suboptimal
sample generation. If the BRDF is very glossy, some of the samples might be
wasted, because too many samples are allocated for lighting sampling.

• Alternatively, the number of samples for each sampling strategy can be adjusted
based on a heuristic, such as a combination of the solid angle of the light and
glossiness of the surface. A reasonable strategy might be to have a minimum
number of samples that will be taken according to each strategy and then dis-
tribute the rest based on the heuristic. For instance, if N = 100, we might allo-
cate 20 samples to each sampling strategy. The remaining 60 samples would be
distributed based on the glossiness of the surface and the light’s solid angle.

Notes. Multiple importance sampling is an unbiased method for reducing the variance
of Monte Carlo estimators. However, if it is used in conjunction with filtered impor-
tance sampling (e.g., filtered importance sampling is used to filter environment lighting)
the method is biased due to the nature of FIS. For visual effects applications, this is not
troublesome as the noise can be greatly reduced.

While MIS reduces the variance, there are still configurations where the variance will
be high. As Kollig and Keller [12] pointed out, multiple importance sampling attempts
to hide a weakness of using a single density function. If, however, only one sampling
density exists for some region of our integration domain Ω, the multiple importance
sampling will revert to a standard importance sampling. Kollig and Keller call this an
insufficient set of techniques [12]. We emphasize again, if inappropriate sampling densities
are chosen, multiple importance sampling will not help to reduce the variance.
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1.3 Practical Notes on Monte Carlo Sampling

1.3.1 Choosing Sampling Density
The effectiveness of importance sampling depends on the choice of the importance
sampling density p(x). Figure 1.5 shows the differences between uniform and impor-
tance sampling.

Figure 1.5: (Left)  A function f(x) can has many peaks. There might not be a sin-
gle importance sampling density p(x) that can capture regions where the
function f(x) has large values. (Middle) If samples (in red) are chosen uni-
formly, the variance will be high, because we oversample regions where the
function is low (dark regions) and undersamples regions where the function
is high (bright regions). (Right) If appropriate sampling density is used, we
take many more samples (in green) in regions where the function has high
values and thus reduce the variance.

Figure 1.6 illustrates why the choice of importance sampling density is crucial for vari-
ance reduction. The examples in the figure demonstrate that inappropriate sampling
density can increase variance, which can even become infinite.

f(x)

p(x) f(x)

p(x)

f(x)

Figure 1.6: Bad choice of importance sampling density. The sampling density does
not match the shape of the function f(x) we want to evaluate. Only a
small portion of the regions in the density function p(x) overlap (in orange)
the non-zero parts of the function. A bad choice of importance sampling
density will increase variance and not reduce it.

1.3.2 Filtered Importance Sampling For Area Lights
Previous sections have described in great detail how to apply filtered importance sam-
pling for infinite (hemispherical) lights. A small extension could be used for filtered
importance sampling for textured area lights.
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Figure 1.7: Cross-sectional footprint of ray intersection.

Recall that each sampled ray has a solid angle:

Ωs =
1

Np(θ, ϕ)
.

When the intersection with the sampled ray is found, we can approximate the area on
the surface of the hit object by looking at the distance to the hit object and the solid
angle of the ray:

A(xi) ≈
∥xi − x∥2 · Ωs

cos θi
. (1.34)

For the above to hold true, we assume that the cross-sectional area is locally flat (Fig-
ure 1.7). Now that we have the estimated cross-section of the intersection A(xi), we
can estimate the mipmap level l based on this area:

l =
1

2
log2

(
A(xi)

Apixel

)
=

1

2
(log2 A(x1)− log2Apixel) (1.35)

where Apixel is the object space area covered by one pixel. It is used to convert areas
from object space to texel space. We can use this formula to filter the texture on area
lights when using multiple importance sampling. It is important to recognize that this
is a crude approximation. When part of the ray footprint is outside the textured area,
the light contribution will be underestimated and wrong. Still, this approximation gives
plausible results.
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1.3.3 What About Visibility?
We have seen in Section 1.1.3 that the idealMonte Carlo estimator should be

L̂o =
1

N

N∑
i=1

LiBV

p(ω)
.

So far, we have been focusing on sampling from either the lighting, BRDF or a combina-
tion of sampling strategies using MIS. However, several recent sampling algorithms ex-
plicitly compute and sample an approximation of the product between the lighting and
BRDF. Two-stage importance sampling [5] and quadtree-based product sampling [4, 3]
hierarchically approximate a BRDF at a given point on the surface and combine it with
the incoming light Li. Some of these methods can be fairly costly or may require pre-
computed data structures for BRDFs. If BRDFs are spatially varying, some of these
methods may not be practical since they would require too much storage for all the
BRDFs in the scene.

We can take this further by adding visibility into the mix to lower the variance. Sam-
pling from a triple product of lighting, BRDF and visibility, LBV , is difficult at best.
Exact visibility would take a long time to pre-compute and would be expensive to store.
We can use an approximate visibility V̄ , thus making the estimator LBV̄ . The problem
with this approach is that approximate visibility V̄ would have to be nonzero every-
where true visibility V is nonzero. This brings us back to the initial problem, because
in order to guarantee this condition is satisfied we would have to compute visibility in
all directions.

On the other hand, we can use the estimator LBV̄ as a control variate:

L̂o =
1

N

N∑
i=1

LiBV̄ − αLiBV̄

p(ω)
+ α

∫
LiBV̄ dωi. (1.36)

Remember that a control variate requires the function f − g to be approximately
constant. Even if visibility is crudely approximated, this condition can be satisfied.
Clarberg and Akenine Möller [2] analyze the variance for this case and describe an
algorithm for using approximate visibility:

• Create a compressedvisibility cache using a compact bitwise representation stored
at a sparse set of points in screen space.

• Compute a rough estimate of LiBV̄ using the approximations.

• Evaluate the difference between this approximation and the correct solution us-
ing Monte Carlo integration

The reader is directed to [2] for detailed discussion and implementation notes.
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1.3.4 Resampled Importance Sampling
Efficiency of a Monte Carlo estimator depends on the expense of the sample evaluation
versus the cost of drawing a sample from better densities. For example, if function is
cheap to compute, but finding the importance density is computationally expensive,
there is probably an advantage to using a simpler sampling density with more samples.
In rendering, casting visibility rays can be expensive and oftentimes we still want to
avoid tracing too many shadow rays.

Consider a situation where we have a glossy surface and we choose N samples based
on the BRDF density. We also know that the surface is very glossy and therefore the
cone around reflected lobe is fairly narrow. We might be able to use less than N visibil-
ity rays to approximate the light transport integral. We can do that by using resampled
importance  sampling [17]. The idea is that from N partial estimates (BRDF times light-
ing, LiB) we only choose M values for which we will compute the visibility.

More formally, resampled importance sampling is a generalization of importance
sampling that permits unnormalized sampling densities or difficult to sample densi-
ties (in our case, visibility) denoted as q. In rendering, the best density q would be
q ∝ LiBV , but we can realistically at best only sample from another density p that is
proportional to LiB. Instead of sampling from q, we generate a set of samples from
a source distribution p and weight these samples appropriately. Then, we resample
these samples by drawing a single sample from them with probability proportional to
its weight.

The basic algorithm proceeds as follows:

• Choose a set of sample Xi from a known distribution p

• Associate a weight wi =
q(Xi)
p(Xi)

with each Xi, where q is the desired (possibly un-
known distribution)

• Generate the final samples Yi by sampling Xi with a distribution proportional to
wi

If the weights wi are chosen to be wj = q(Xi)
p(Xi)

then the resulting samples Yi will be
approximately distributed to q. The processes of resampling is equivalent to filtering.
In rendering applications, we use importance resampling as follows:

• Generate N samples from some proposal distribution p(x). This is as before,
where we created samples from either lighting density, BRDF density or com-
bined MIS density.

• Compute the weights (e.g., luminance) of partial contributions (LiB, but no visi-
bility yet).

• Compute the discrete distribution from these weights.
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• Chose M samples from the above N samples. These samples are chosen based
on the importance density that we computed in previous step.

• Shoot shadow rays for these M samples, add computed visibility to each sample
and apply proper weighting (based on the probability with which each sample was
chosen).

Note that although the desired target density q(x) is unknown a priori because of the
visibility, we never sample from it. We only need to be able to evaluate it and that is
straightforward as long as as we can evaluate visibility V .

Resamples Importance Sampling (RIS) is better than importance sampling when:

• q is a better importance sampling density than p.

• Computing proposals is much cheaper than computing actual samples.

RIS takes advantage of differences in the variance computation expense. More details
and examples can be found in [17].
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2 Metropolis Light Transport
Metropolis light transport (MLT) is often considered to be the most sophisticated of
the unbiased light transport simulation algorithms, with a reputation to be able to ren-
der scenes efficiently where other methods fail. To be fair, MLT also has its flaws and
much of the efficiency is tightly related to whether the correct mutation strategies for
the problem are implemented or not. MLT certainly is not the answer to each and ev-
ery light transport problem, but its high robustness often make it the tool of choice to
render demanding scenes, like architectural shots with pronounced caustics.

A common misconception about MLT is that is generally hard implement. It can cer-
tainly get quite complicated, mainly depending on how involved the mutation strategies
are and how many are implemented. But then one can also implement a simple MLT
variant in very few lines of code. MLT definitely is quite different from classical Monte
Carlo rendering approaches and also has somewhat different requirements on what
functionality the rendering core needs to provide. The amount of special functionality
needed, however, is heavily depending on what flavor of MLT is actually implemented.
In general MLT is more like a family of approaches than a single light transport algo-
rithm.

In the following we give a mostly self-contained introduction to MLT, also addressing
some implementations issues. The goal is to establish an understanding of how MLT
works, when it works best, and what its differences to other Monte Carlo light transport
algorithms are.

2.1 Metropolis Sampling
The Metropolis sampling algorithm [13, 8] is a powerful method to generate a process
of samples that are, in the limit, distributed according to any target function f. Since
the only restriction posed on f is that we need to be able to evaluate it, this provides
means to (importance) sample functions that are hard or impossible to handle by other
means. We will outline some of the theory and the motivation behind this method
without going into to much detail (for a thorough discussion we refer to [10]).

To understand how Metropolis sampling works we look at a stochastic system given
on a domain Ω of states and featuring a concept of energy flow between two states.
Assume we have such a system and the energy flow from on state x to another state y is
governed by a probability density function K(y|x). If we now assume that this system
is in equilibrium (i.e. the energy concentration per state does no longer change over
time) and that the energy in each state x is expressed by our target function f(x), we
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have
f(x)K(y|x) = f(y)K(x|y). (2.1)

This condition, called detailed balance, states that the amount of total energy flow from
x to y has to be the same as the amount that is flowing into the opposite direction. If
this would not be the case, the system would not be in equilibrium.

For some applications such a system would be a real world physical process and T (y|x)
would be given by the physical laws driving that process. In our case the system is
merely a mathematical construct and we do not directly know what a suitable K(y|x)
for the target function f(x) would to look like. The key idea now is to replace K(y|x)
by an almost arbitrary distribution T (y|x) and only accept a movement from x to y with
probability a(y|x). This means that we have set K(y|x) = a(y|x)T (y|x) and detailed
balance is now expressed as

f(x)a(y|x)T (y|x) = f(y)a(x|y)T (x|y)

which leads to the relation
a(y|x)
a(x|y)

=
f(y)T (x|y)
f(x)T (y|x)

for the acceptance probability. We can fulfill this relation by setting

a(y|x) := min
{
f(y)T (x|y)
f(x)T (y|x)

, 1

}
. (2.2)

The stochastic system defined by a(y|x)T (y|x) is a Markov chain, where the tran-
sition from the current state x to the next state x′ is based on a proposal y (chosen
with probability density T (y|x)) and an acceptance probability for that proposal, i.e we
set x′ = y with probability a(y|x) and x′ = x with probability 1 − a(y|x). Since we
have constructed a(y|x) such that we obtain detailed balance for the target function
f(x), the chain’s stationary distribution p(x) is proportional to the target function, i.e.
p(x) = f(x)

b
where the normalization b =

∫
Ω
f(x)dx does not need to be known for the

method to work.
If we now simulate a trajectory of this Markov chain we know that once it has reached

the stationary distribution its states are distributed according to the target function
f(x). Simulating the Markov chain thus provides the means to draw samples from f :
this is the Metropolis sampling algorithm. Let us summarize what we need to imple-
ment it.

• We need to be able to evaluate the target function f.

• We need to implement a mutation  strategy that given a state x creates a tentative
state y according to a probability density T (y|x). In order to ensure the ergodicity
of the resulting Markov chain we need to have T (y|x) > 0 whenever f(x) > 0
and f(y) > 0. This also ensures that equation 2.2 is always well defined for all
proposals we create.
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• In order to compute the acceptance probability we need to be able to compute
both T (y|x) and T (x|y) (ideally they are equal and cancel in equation 2.2).

• We can only use the states produced by the simulation process after the station-
ary distribution has been reached, thus we need to discard a certain amount of
samples in the beginning. This issue, known as start-up bias, is generally a hard
one but can be avoided or compensated under certain circumstances.

Apart from the points we just mentioned there is a lot of freedom to construct the
mutations – which is one of the key strengths of the algorithm. Often a Gaussian along
each coordinate axis (and centered in the current state) is used as mutation. This favors
small step sizes but still ensures that the whole domain is covered. However, there
is little restriction on what the mutation strategy has to look like. In fact it can be
hand tailored to the problem that is faced, e.g. we can construct mutations targeted
to explore certain lighting effects. Also we do not need to restrict ourselves to a single
mutation strategy, we can randomly choose from a set of possible mutations T1, . . . , Tn.
If we choose Ti with probability pi (where

∑n
i=1 pi = 1), then we have the probability

density of the combined strategy as T (y|x) =
∑n

i=0 piTi(y|x).

2.2 Application to Light Transport
Photorealistic image synthesis can be seperated into two parts, computing the radiance
function throughout the scene (and how it arrives in the camera model) and then pro-
jecting that function onto a discretized two dimensional image, i.e. the grid of pixels.
The projection is defined by a pixel filter function wj and the value of pixel j is given
as

vj =

∫
Ω

f(x)wj(x)dx. (2.3)

Here Ω is the domain where the light transport paths are defined on and f gives the
measurement contribution of such a path. The pixel filter function wj is defined on
the image plane (which is a two dimensional subset of the whole integration domain Ω)
and usually has a small support.

Estimating the radiance function and projecting it to a pixel are often tightly con-
nected in an implementation since it feels natural to work on a per pixel basis. A typical
example is a forward path tracer that creates the image pixel per pixel by shooting rays
through that pixel’s filter’s support. However, we can also view this as an integration
problem over the whole image plane, where rays are started from random positions on
the image plane and just those pixels’ values are influenced where wj is non-zero. Like
this a forward path tracer that works per pixel can interpreted as sampling that works
on the whole image plane and employs stratisfication such that each pixel receives the
same number of samples.

In the following we will work on the whole image plane and not compute integrals
pixel by pixel. Of course we still compute the integral vj per pixel, but we do this
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by sampling x using some density p(x) on the whole domain Ω, and thus on the whole
image plane. (Usually the first two dimensions of Ω will be the image plane and the p(x)
is a product density where a uniform distribution is used for those first two dimensions.)
For x1, x2, . . . sampled according to p(x) we now can compute f(xi)/p(xi), and wj(xi)
for all pixels (for most of which wj(xi) will be zero), yielding a Monte Carlo estimator
that computes all pixel integrals:

vj =

∫
Ω

f(x)wj(x)dx = E

[
1

N

N∑
i=1

f(xi)

p(xi)
· wj(xi)

]
.

Now it is just one more step to MLT. Instead of using the density p we use the
Metropolis sampling algorithm with target function f to create samples x1, x2, . . . . If
we assume we have already reached the stationary distribution then those samples are
distributed according to f and we have

vj =

∫
Ω

f(x)wj(x)dx = E

[
1

N

N∑
i=1

b · wj(xi)

]
.

The samples from the Markov chain simulation “randomly move around” the image
plane, with a distribution proportional to the radiance arriving on the image plane. As
such we just need to accumulate a histogram per pixel, where we add up b · wj(x) for
each Markov chain sample falling into the support of the pixel. This is MLT:

1. Estimate normalization constant, e.g. by using a Monte Carlo estimator

b =

∫
Ω

f(x)dx ≈ 1

N

N∑
i=1

f(xi)/p(xi). (2.4)

2. Choose a initial sample x0, set x = x0.

3. For i = 1 to M do:
• y = mutate x (according to T (y|x))

• compute a = min
{

f(y)T (x|y)
f(x)T (y|x) , 1

}
• set x = y with probability a

• for all pixels j with wj(x) > 0, add value wj(x)·b
M

Strictly speaking, step 1 can already be a hard problem. However, let us put this into
perspective by comparing it to the problem of computing an actual image. Think about
computing a 1000 × 1000 image with one sample per pixel: this already translates to
having thrown one million samples at equation 2.4. And even if the normalization con-
stant is off by small amount, this basically only means that the resulting image will just
be a bit too dark or a bit too bright. Unless we want to render an animation this might
not be as important after all.
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Using the Expected Value for Contributions We will accept the proposal y from the
current state x with probability a(y|x), so we will add a contribution b · wj(y) for state
y (i.e. to all pixels j with wj(y) > 0) with probability a(y|x) and a contribution b ·wj(x)
for state x with probability 1 − a(y|x). Instead of randomly adding the contribution
for one state or the other, we simply add the expected value of contribution for both
states, which means we add b · wj(y) · a(y|x) for state y and b · wj(x) · (1− a(y|x)) for
state x.

Colors The outlined MLT algorithm assumes that f(x) is a scalar function and thus
computes a scalar output image. Since we usually are interested in color output we
need to apply some minor modification. For a vector-valued f(x) we use an arbitrary
intensity function l that transforms those vectors to scalars, and then use the scalar-
valued fl(x) := l (f(x)) as target function.

Instead of recording equal valued contributions of magnitude b on the image plane
we now record bl · f(x)/l(f(x)) where bl is the normalization constant resulting for the
scalar-valued target function fl.

• A typical choice for l is the CIE luminance of the computed color. The intention
here is to have the distribution follow the response characteristics of the human
eye. However, sometimes is better to be more conservative and not to undersam-
ple colors that have lower CIE luminance, e.g. by using the maximum of all color
channels as l.

• For full spectral simulation, the wavelength is usually one more dimension of the
problem and can be sampled by the Metropolis sampling algorithm along with
all the other components. Here the result is an intensity value and the sampled
wavelength. Accumulation then usually takes place in a tristimulus color space,
such as CIE XYZ, where the spectral values are converted to. So we could again
use the CIE luminance or, more conservatively, just the spectral intensity value
(without further wavelength dependent weighting) as l.

Start-Up Bias The Markov chain created by Metropolis sampling has the desired sta-
tionary distribution but it can take a while until the simulation process reaches that
distribution. The intuitive understanding here is that the process is biased towards a
starting state which needs to be “forgotten”. Unfortunately, it is impossible to tell to
when this is the case, it is depending on how correlated successive samples are and how
many have been taken.

• If we simulate a single Markov chain start-up bias can mostly be ignored. As long
as the initial state has a non-zero contribution (and thus a non-zero probability
to be created by the Markov chain) it does not really matter where we start since
the state could have been chosen anyways (albeit at low probability).
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• If many Markov chains are simulated in parallel all of the chains are biased towards
the distribution used to sample the initial states. Since we can typically spent less
samples per chain if we simulate many chains, this will influence the result for
quite a while.

• Start-up bias obviously would not be an issue if we could already choose the start-
ing state according to the stationary distribution. This, of course, is something we
probably cannot do – otherwise there would be no need to apply Metropolis sam-
pling in the first place. However, we can approximately do it using re-sampling
from a larger set (see next item).

• If the initial state x0 is chosen using a density p(x0) and if we use f(x0)/p(xo) as
weight for all samples created by the chain (instead of b), the estimator is unbiased
[20, 18], i.e. the expected value is the correct integral. Of course, this is not
directly useful if applied to a single Markov chain, since it only leads to the correct
image brightness in expectation, i.e. when many chains weighted like this are
averaged.
Better is to sample a large number n0 of initial states x0,j according to p(x0,j)
for j = 1, . . . , n0 (those samples can also be used to estimate the normalization
constant b). Then we re-sample a smaller set of n ≪ n0 chains (or even a single
chain) based on the values w(x0,j) = f(x0,j)/p(x0,j) and use an equal weight for
the re-sampled chains [18].

2.2.1 Efficiency
Metropolis sampling follows the targeted function exactly which, from a Monte Carlo
simulation point of view, is as good as we can get. Of course this property does not
come for free: the samples are highly correlated. We can differentiate between two
sources of correlation.

• Correlation due to rejection: if the probability of acceptance for proposals is low,
we can get stuck in one state for a very long time.

• Correlation due to small mutations: the smaller the mutation, the more similar
successive states are.

Ideally, we would have a mutation strategy were the proposals are fully independent
and are accepted with probability one. It is pretty clear that this would mean that
we could already perfectly importance sample the target function by other means. In
fact it boils down to exactly this: setting the acceptance probability in equation 2.2
to one and having independent mutations, i.e. T (b|a) = T (b), we have f(y)/f(x) =
T (y)/T (x)which implies that f and T can only differ by scaling, so T is already perfectly
importance sampling f.

Similarly as a standard path tracer can suffer from high variance problems when a
highly contributing effect is sampled at low probability, the samples from MLT can yield
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high variance if the mutations are bad in finding significant regions of the integrand
and have low acceptance probability. It is clear that the key to high efficiency is good
mutations strategies that keep the variance low. Asymptotically, however, the behavior
of MLT is the same as for uncorrelated standard Monte Carlo path tracing, the variance
per pixel is decreasing linearly in the number of samples taken [1], so we do not have a
gain or loss from using correlated samples in general.

A certain drawback of the Metropolis sampling approach is that stratisfication, es-
pecially across the image plane, cannot be obtained. There is no control to influence
into what pixel a sample should fall to and the resulting variance in the amount of how
many samples a pixel has received at a certain time leads to more low frequency noise
– even for simplest scenes.

2.3 Mutation Strategies
The Metropolis sampling framework leaves a great degree of freedom to what the mu-
tations that create a proposal state y from a current state x can look like. In practice
there are basically two approaches for implementing mutations, one is to work on the
sample numbers directly, the other to explicitly modify light transport paths.

2.4 Primary Sample Space Mutations
The straight forward application of Metropolis sampling to light transport is to just
mutate the random numbers (in the infinitely dimensional unit cube I) that are used
to drive an unbiased Monte Carlo light transport estimator [11]. This estimator, let us
call it primary estimator, can be any kind of Monte Carlo light transport algorithm,
e.g. a path tracer, a light tracer, or a bidirectional path tracer. Fed by a uniform ran-
dom sample x ∈ I it creates a light transport path (or a set of light transport paths)
with a certain contribution, e.g. for a simple path tracer t(x) = f(x)/p(x). Although
in expectation the contribution of t(x) recorded on the image plane is exactly what
we want to compute, the efficiency of the primary sampler might be low because the
probability density p(x) just does not match some parts of the integrand well enough.
In practice these are the parts were the primary sampler does not employ a suitable
importance sampling technique, like caustics in the case of a simple path tracer. Even
with the many techniques at hand with a bidirectional path tracer, there might be a
high contribution effect that is just not handled by any of them.

In order to address the problems of the primary sampler we can wrap it up in Metropo-
lis sampler: we mutate the random sample x according to some probability density
function on I. Generally two types of distribution are used:

• A large step mutation proposes a (fully independent) new random sample, drawn
from a uniform distribution. Here the proposal state does not depend on the
current state, i.e. Tlarge(y|x) = Tlarge(y) = 1.
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2 Metropolis Light Transport 2.4 Primary Sample Space Mutations

• A small step mutation adds a small offset (following some convenient distribu-
tion) to the current sample. Usually, the distribution is constructed such that
Tsmall(y|x) = Tsmall(x|y), e.g. by sampling an independent and symmetric offset
per component.

We now randomly decide whether to use a large step mutation with probability plarge or
a small step mutation with probability 1− plarge. Then we have

T (y|x) = plarge + psmall · Tsmall(y|x).

Note that T is symmetric if Tsmall is symmetric, in which case we do not have to compute
it since it cancels out in equation 2.2.

Implementing Small Steps Small step mutations can be implemented by applying a
small offset to the current sample number, where we have to keep in mind that smaller
steps are generally more likely to be accepted but yield higher correlation. A typical
choice is to apply a random, preferably small, symmetric offset per component, i.e. if
x = (x1, x2, . . . ) we add an independent offset per xi. The proposal in [11] is to use

(y1, y2, . . . ) = (x1 + smallstep(x1), x2 + smallstep(x2), . . . )

where
smallstep(xi) = ±s2e

− ln(s2/s1)·ξi

for ξi uniformly distributed in [0, 1] and the sign chosen at random. This results in
a minimum step size of s1 and maximum step size of s2 with higher probabilities for
smaller steps. The recommendation from [11] is to use s1 = 1/1024 and s2 = 1/64.

Multiple Importance Sampling for Large Steps Besides being a valid mutation strategy
for the Metropolis sampler, large step mutations could also form a standard Monte
Carlo estimator. In fact that standard Monte Carlo estimator can yield higher efficiency
for some regions of the integrand, essentially those regions which it oversamples. Since
we have computed them anyways, it can thus be useful to interpret large step mutations
as both samples of the Metropolis sampler and a standard Monte Carlo sampler [11].
Then we can combine the samples from the two techniques in a low variance fashion
using multiple importance sampling [19].

In the terms of multiple importance sampling we have two techniques, the first tech-
nique is Metropolis sampling and its probability density p1 (defined on the infinite di-
mensional unit cube) is proportional to the target function t(x) = f(x)/p(x), i.e. we
have p1(x) = 1

b
t(x). The second technique is Monte Carlo sampling formed by large

steps, which are uniformly sampled and created with probability plarge, i.e. we have
p2(x) = plarge · 1.
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• The current state x is a sample from Metropolis sampling, using the balance
heuristic we get a multiple importance sampling weight of p1/(p1 + p2). Com-
bining it with the usage of the expected value, the contribution we add for the
current state is

(1− a(y|x)) · p1(x)

p1(x) + p2(x)
· t(x)

p1(x)
= (1− a(y|x)) · t(x)

t(x)/b+ plarge
.

• Analogously, the proposed state y is a sample from Metropolis sampling, where
it gets contribution

a(y|x) · p1(y)

p1(y) + p2(y)
· t(y)

p1(y)
= a(y|x) · t(y)

t(y)/b+ plarge
.

If the proposed state results from a large step mutation, it is also a sample from
Monte Carlo technique and we have the additional contribution

p2(y)

p1(y) + p2(y)
· t(y)

p2(y)
=

t(y)

t(y)/b+ plarge
.

As desired the weighting now favors the Monte Carlo estimator over the Metropolis
estimator for large steps if t(y) is small and unlikely to be accepted. The higher plarge is,
the more Monte Carlo samples we produce and the more they influence the weight for
the Metropolis samples.

Note that it is not necessary to have the exact value of b since multiple importance
sampling does not require p1 to be the exact probability density in order to be unbiased.
However, it should be a good approximation, such that the balance heuristic works well.
Of course we could also use the power or maximum heuristics.

Estimation of the Normalization Constant We can make further use of the fact that
large step mutations compute valid samples for the primary estimator: by summing up
t(x) we can progressively refine the normalization constant b. In fact, unless there is a
need for early feedback or we want to employ multiple importance sampling for large
step mutations, we can completely skip the step of pre-estimating the normalization
constant and only compute it on the fly using large steps.

Large Step Probability Essentially, we need to balance large step mutations, which
reduce correlation and can help to move out of local maxima, against small step muta-
tions, which explore the space more locally and are usually more likely to be accepted.
Furthermore, we need to take into account that large steps can have additional value,
such as to compute the normalization constant and (weighted by multiple importance
sampling) as direct contribution for darker images areas. As there is no general best
way to set plarge, a conservative strategy is to not set it too high and not set it too low.
A relatively robust choice is to use a value between 0.1 and 0.5.
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Lazy Evaluation of Mutations Although in theory light transport is a infinitely di-
mensional integration problem, in practice only a limited number of light bounces are
simulated, each of them usually consuming a limited amount of pseudo-random num-
bers. Even if the primary sampler employs Russian roulette a real world implementation
should limit the amount of bounces in order to avoid unpredictable runtime or even
infinite loops due to numerical imprecision (in floating point world path tracers tend
to get stuck somewhere).

So let us assume that the maximum amount of sample numbers drawn for each path
space sample of the primary estimator is limited. We can now store both the current
state and the mutation state in a fixed size array of that maximum size. A naïve imple-
mentation would loop over all samples of the current state, apply a mutation to that
number, and store it in the mutation state. Then, if the mutation state is accepted, we
overwrite the current state with the mutation state, otherwise we keep it unchanged.

In practice, however, a path will likely terminate (much) earlier and not all dimensions
are used. For efficiency reasons it is therefore desirable that we only have to compute
the mutations that are actually required.

For large steps mutations this is very simple, here we do not need to take the current
state into account and just create a new sample number dimension by dimension as
needed. Small steps on the other hand need the previous state, so in case the previous
path used less dimensions we might need to replay the history of previous mutations
up to the current point in time. Of course we only have to do this starting from the
last accepted large step, since that one is independent of any previous history. This
is the implementation proposed in [11], where a time stamp is stored alongside each
dimension, to keep track of how many small steps need to be performed since the last
large step. A drawback is that sometimes this only postpones the effort: if a path is
much longer then the previous one and it has been a while since the last large step was
accepted the sampling gets very costly.

So let us apply a small trick to simplify this a bit more. For dimensions that were not
used in the previous state we just always apply a large step. This means we formally
define the probability density for a small step proposal of the i-th component as

T (i)(yi|xi) =

{
1, component i is used in f(x) or f(y)
smallstep(xi), otherwise.

Now we have T (y|x) =
∏m

i=1 T
(i)(yi|xi), where m is the minimum of the maxima of

dimensions up to which we use the samples in f(x) and f(y). In fact we do not really
need to care about that if we move from a longer to shorter path, because then we do
not create the sample in the first place. However, by defining it like this we conveniently
have T (y|x) = T (x|y). Now we only need to store the maximum dimension we have
actually used along with the state and only need to check against that whether to do
a small or large step for the current component. An additional benefit is that we only
need to back up an accepted state up to that number, potentially copying much less

31



2 Metropolis Light Transport 2.4 Primary Sample Space Mutations

data. The resulting sampler implementation is quite compact, listing 2.1 contains the
code in C.

Mapping of Dimensions One key assumption for applying small mutations on the
pseudo-random numbers directly is that small changes there translate to small changes
on the resulting light transport path. For most cases this true, since the implementa-
tions of importance sampling employed by the primary estimators typically are rather
smooth functions. However, there are usually also random choices involved, like choos-
ing between BSDF components, that can cause drastic changes for all subsequent ver-
tices. To a certain extent this unavoidable, but we can try to minimize the impact by
mapping the dimensions from the unit cube to the problem carefully.

• A bidirectional path tracer creates both a light and eye path by sampling a particle
trajectory through the scene. Each of them is using a certain number of pseudo-
random samples, which in the case of Russian roulette might not be known ini-
tially. Now in order to have small changes on the sample result in small changes
on the actual path it is important that the same dimensions are used for the
same path segment. We absolutely should avoid that the length of the light path
changes the dimensions used for the eye path (and vice versa). A popular way to
do this is to use odd dimensions for one path type and even ones for other.
Alternatively, we can just have two separate arrays of current sample points, one
is used for the light path and one is used for the eye path. This is also useful for
a lazy sampler implementation, since we can apply the trick to always do a large
step mutation in case the current dimension was not used for the previous sample
separately per path type.

• Sampling the next path vertex from the existing one might need a different amount
of pseudo-random samples depending on the material model. On the extreme
side we have perfectly specular reflection which does not consume any samples,
while a typical multi-component BSDF model usually consumes three. As a con-
sequence, a small mutation might suddenly change subsequent vertices radically,
just because a different material is encountered, e.g. a direct light sample chooses
a different light source. Thus it often pays off to always draw the maximum num-
ber of samples per bounce even if they are not used (especially since the cost
of generating a sample is negligible compared to cost of ray tracing and material
evaluation).

• Sometimes the number of samples needed to create the next vertex cannot be
bounded. The typical example here is the usage of rejection sampling to impor-
tance sample the BSDF which, fortunately, is seldom used in practice since most
BSDFs offer more convenient means to be sampled. Another example is using
Woodcock tracking to importance sample the transmittance function of hetero-
geneous participating media [21, 6], a key element for solving volume light trans-
port in an unbiased way.
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1 typedef struct {
2 /* previous state */
3 double samples_prev[MAX_DIM];
4 int max_dim_prev;
5 /* current mutation */
6 double samples[MAX_DIM];
7 int current_dim;
8 bool large_step ;
9 } state_t ;

10
11 void init ( state_t * state )
12 {
13 state−>max_dim_prev = 0; /* no history yet */
14 state−>current_dim = 0; /* start */
15 }
16
17 double sample(state_t * state )
18 {
19 /* decide between small and large step mutation */
20 if ( state−>current_dim == 0)
21 state−>large_step = (rand01() < LARGE_STEP_PROB);
22
23 /* also do a large step mutation if the previous state has used less components */
24 if ( state−>large_step ||
25 state−>current_dim >= state−>max_dim_prev)
26 samples[state−>current_dim] = rand01();
27 else
28 samples[state−>current_dim] =
29 smallstep ( state−>samples_prev[state−>current_dim]);
30
31 return samples[state−>current_dim++]; /* increment current dimension */
32 }
33
34 void accept( state_t * state )
35 {
36 /* copy back used dimensions */
37 for (int i = 0; i < current_dim; ++i )
38 state−>samples_prev[i] = state−>samples[i];
39 state−>max_dim_prev = state−>current_dim;
40 state−>current_dim = 0; /* proceed */
41 }
42
43 void reject ( state_t * state )
44 {
45 state−>current_dim = 0; /* proceed */
46 }

Listing 2.1: Primary sample space lazy Metropolis Sampler
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Let us assume we use Woodcock tracking to sample the next interaction vertex,
which might either be a point in the volume or the intersection point with the
next surface along the ray. If the volume is thin along the current path, chances
are that we have used a high number of sample points for Woodcock tracking and
still reach the same surface. Here we ideally want to use mutations of the numbers
we used for that vertex in the current state and nothing something that depends
on the number of Woodcock tracking steps we did in the volume. However, for
the Woodcock tracking process we of course also want to use mutations of the
numbers that were used for the Woodcock tracking process before, since it might
very well be that the volume is rather thick and the interesting effect we want
to explore is a volume effect. In order to obtain both, we need to reserve the
dimensions in a two dimensional fashion, e.g. an array of arrays, where each array
is associated to one bounce and holds a fixed number of points for BSDF or phase
function sampling, and an arbitrary number of points for Woodcock tracking [15].
In an implementation the arrays of course should be of finite size, but even as
such the memory requirements for storing the state are increased drastically.

2.5 Path Manipulation
The original formulation of Metropolis light transport [20] constructs the mutations
directly in path space. This has both advantages and drawbacks: while it allows to
manipulate existing paths very locally and focused on very specific effects, it is no longer
an orthogonal technique that can just be applied to an already existing primary light
transport estimator. Here the mutations themselves shape the rendering core and more
care needs to be taken in order to be able to compute T (y|x).

We can basically differentiate between two mutation strategies, so called bidirec-
tional mutations that create new paths from old by deleting or adding vertices, and
pertubations, which change the positions of already existing vertices slightly.

2.5.1 Bidirectional Mutations
Let us assume we have a light transport path x = x0 . . . xk with k + 1 vertices, where
the first vertex x0 is on a light source and last vertex xk is on the lens. A bidirectional
mutation now constructs a new path y by replacing a subpath of x with a new subpath
(of possibly different length).

In order to compute a(y|x) we need to compute f(x), f(y), T (y|x), and T (x|y). The
target function is the contribution function of the path, i.e. if we have a path x =
x0x1 . . . xk, then

f(x) = Le(x0 → x1)G(x0 ↔ x1)
k−1∏
i=1

(fs(xi−1 → xi → xi+1)G(xi ↔ xi+1))W (xk−1 → xk)

We quickly recall the terms used in above equation, for details please refer to [18],
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• Le characterizes the radiance emitted on the light source,

• f(x → y → z) is the BSDF for light coming from point x that is scattered at
point y into the direction of point z,

• G(x ↔ y) = |cos θx||cos θy |
∥y−x∥2 V (x ↔ y) is the geometric term, the product of the

cosines at the points x and y over the squared distance times the binary visibility
between those points, and

• W is the response of the camera model.

In a standard Monte Carlo estimator f(x) is computed alongside a probability density
p(x) used to create the sample xwhich yields the contribution of the sample, f(x)/p(x).
In contrast to that, for MLT we are interested in the ratio defining the acceptance
probability 2.2. Therefore note that we do not have to compute the parts of f that are
shared between the paths x and y, since the cancel out in that equation. But now for
the steps that create a new path from the current path:

• We choose to delete the subpath xs . . . xt (not including the vertices xs and xt)
where −1 ≤ s < t ≤ k+ 1 is chosen with probability pdelete(s, t). Note that there
is the possibility that the current path is disposed completely.

• We extend the remaining path segments by starting random particle walks from
their end points. The light path x0 . . . xs is extended by s′ vertices, l1 . . . ls′ , at its
beginning, the eye path xt . . . xk is extended by t′ vertices, e1 . . . et′ , at its end.
The two paths are then joined by connecting the endpoints, resulting in the mu-
tated path y = x0 . . . xsl1 . . . ls′et′ . . . e1xt . . . xk =: x0 . . . xsz1 . . . zs′+t′xt . . . xk.

• For the light path we sample the BDSF at xs and trace a ray to determine the next
vertex xs+1. This process is continued until we have s′ new vertices. In case the
light path is empty initially, we need to sample a position on the light sources and
start the random walk by sampling the EDF there.

• Analogously we sample t′ new vertices starting from vertex xt for the eye path. If
the eye path is empty initially, we need to sample a new pixel position and a point
on the lens to obtain the first vertex and direction.

• We now can describe f for the parts of the path that differ between x and y. For
x this is

f ′(x) =
t−1∏
i=s

(fs(xi−1 → xi → xi+1)G(xi ↔ xi+1)) fs(xt−1 → xt → xt+1),
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for y we have

f ′(y) =fs(xs−1 → xs → z1)G(xs ↔ z1)fs(xs → z1 → z2)G(z1 ↔ z2)

s′+t′+1∏
i=2

(f(zi−1 → zi → zi+1)G(zi ↔ zi+1))

f(zs′+t′−1 → zs′+t′ → xt)G(zs′+t′ ↔ xt)f(zs′+t′ → xt → xt+1).

Note that for simplicity we have ignored the special cases at the path ends where
the emission or the camera response come into play.

• In order to obtain the probability density, we need to look at the probability den-
sity involved in implementing the change. All probability densities are expressed
with respect to the area measure.
This is best illustrated by an example: assume we would have a mutation strategy
that either shortens the path with probability q by the last vertex or extends it
there with probability 1−q. Now assume we have added one vertex xn+1 to a path
x1 . . . xn by sampling the BSDF at vertex xn: If we use a density on the projected
hemisphere ps to do that and xn+1 is the resulting next surface intersection point,
we have T (x1 . . . xnxn+1|x1 . . . xn) = (1 − q) · ps(xn−1 → xn → xn+1) · G(xn ↔
xn+1). For the reverse direction we have T (x1 . . . xn|x1 . . . xnxn+1) = q.
Similarly, we can now compute T (y|x) for the subpath we have inserted, and
T (x|y) for the subpath that was deleted. Note that it is important to include
all possible ways a given subpath with l vertices was created in T , i.e. all combi-
nations of s′ and t′ with s′ + t′ = l need to be taken into account. More details
will be included in an updated version of the course notes.

Ergodicity Bidirectional mutations fulfill the ergodicity requirement for the Markov
chain, i.e. T (y|x) > 0 whenever f(x) > 0 and f(y) > 0. In other words we can move
from any contributing state to any other contributing state. A consequence is that we
(theoretically) always have to compute Tbidirectional(y|x) (and Tbidirectional(x|y)) and include
that in T (y|x) (and T (x|y)) for any other mutation strategy, since it could have been
constructed by a bidirectional mutation as well.

2.5.2 Pertubations
Pertubations are modifying the positions of (some of the) vertices of the current path,
usually by slightly modifying the direction from one vertex to next, while leaving the
path topology intact. They are intended to yield high acceptance probability by only
do small chances, targeted at very specific lighting effects. A positive side effect of per-
tubations is that the implementation is often simpler and more efficient as compared
to the more general case of bidirectional mutations. More details on pertubations will
be included in an updated version of the course notes
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2.6 Two-Stage MLT
A direct consequence of importance sampling of the target function, which in expec-
tation is the intensity arriving on the image plane, is that brighter areas receive more
samples that darker areas do. More precisely, the ratio of the number of samples ar-
riving in a pixel to a given total number of samples is proportional to the brightness of
that pixel. This is not really desirable, since it leads to more perceivable noise in dark
image regions whereas bright details might receive more samples than a (most likely
tonemapped) final image would need.

• The problem is most prominent if very bright light sources are directly visible,
as an extreme example think about looking at the daylight sky with the sun in
the field of view. Even though the sun only subtends a very small solid angle,
it directly contributes most of the intensity of daylight. Thus, the majority of
samples produced by MLT will be concentrated in the (probably very few) pixels
showing the sun.

• The most exteme cases can be avoided by excluding directly visible light sources,
or even direct lighting [20], from MLT since they usually can be computed ro-
bustly by other means. The obvious drawback is that we then have an inhomo-
geneous solution, where we need to decide how much computation to spent on
each subproblem.

• Ideally we would want to have approximately the same (expected) number of sam-
ples per pixel and still importance sample the target function within that pixel,
i.e. the intensity arriving within that pixel.
Assume that we would know the final intensity of a pixel vj , then we could change
the target function t(x) using that intensity to

t′(x) =
t(x)∑

pixels j:wj(x)>0

wj(x)vj
.

This would lead to equal probabilities for all pixels to be sampled. We would
obtain the final image then by multiplying the result (an equal valued image) with
the corresponding pixel values vj.
Of course we do not know the exact pixel intensity, since that is what we want
to compute in the first place. However, we can try to approximate it and change
the target function accordingly. Generally, we can apply any masking function
m(x) on the image plane and change the target function to t′(x) := t(x)/m(x).
In order to obtain the desired output image, we just need to multiply the result
with m(x). Like this we can

– mask down directly visible light sources by setting m(x) high there,
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– use a low resolution image as an approximate intensity mask, or more gen-
erally,

– use any user-given mask.
As always, it is important to be quite conservative with the approximate guesses
used to drive the sampling. If m(x) is set to high for a specific area (like in the
vicinity of light sources for a low resolution mask), those areas could get under-
sampled a lot.

2.7 Parallelization of MLT
Standard Monte Carlo based light transport algorithms are typically straightforward to
parallelize, at least if we ignore that we should ensure that the seeds for the pseudo-
random number generator are sufficiently independent. Usually the only sampling spe-
cific information we need in order to compute a task is a state for the random number
generator or, in the case of quasi-Monte Carlo, just a single index for the sequence we
use. In contrast to this the Markov chain nature of MLT, i.e. fact that the next state
depends on the current state, makes it somewhat harder to parallelize things.

The obvious approach is to simulate many chains in parallel. Each thread can then
simulate its own chain mostly independently of what other threads do, using a pseudo-
random number generator state which is uniquely associated with that chain. In order
to get reproducible results, a pool of chains can be used and iterations for all chains in
that pool can be scheduled such that each chain gets the same amount of iterations.

Simulating independent chains is generally a good thing, since it reduces the amount
of correlation. However, there are some things we have to keep in mind for an imple-
mentation.

Shared Framebuffer Access Different chains, and therefore different threads, need to
access the framebuffer at random positions. The requirement here is the same as for
light tracing (or bidirectional path tracing in general): we need to ensure that there are
no conflicts. Having a dedicated framebuffer per thread is typically not feasible if the
number of threads is high, so it is preferable to use atomic instructions (if available) or
streams of full samples that get transferred to the framebuffer in batches.

Start-up Bias Issues The more chains we have, the higher the impact of start-up bias is.
In addition to that, compensating start-up bias by re-sampling becomes more involved:
in order to re-sample a larger number of chains, the initial set of chains to re-sample
them from should to be larger accordingly. If this is not the case, there is a higher
amount of correlation in the beginning, since the probability of having duplicate initial
states is higher.
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State Storage Size In contrast to standard (quasi-)Monte Carlo we have the require-
ment to store the current state. While a (quasi-)Monte Carlo estimator only needs
the next sequence index or pseudo-random number generator state, MLT needs all the
information to construct a mutated path based on the current path.

2.8 Summary
Metropolis light transport works particularly well in complicated scenes where other
unbiased methods have trouble. There are basically two advantages it draws its strength
from: First there is the powerful framework of Metropolis sampling that guarantees
the right distribution and second we have the possibility to construct almost arbitrary
mutations that can locally explore important illumination effects that are hard to create
by other sampling methods.

• The efficiency of MLT of course massively depends on the mutation strategy that
is actually implemented and whether that strategy works well for a given scene or
not.

• An obvious question is: when does MLT fail? In general you can pretty much
outsmart any light transport algorithm by constructing exactly the kind of scene
where it falls apart. For MLT this is harder to predict though, since we need to
construct a scene where all mutation strategies yield low acceptance. As such,
MLT is generally very robust.
Of course there are also many cases where Metropolis light transport does not
necessarily outperform other algorithms, e.g. if the target function is sufficiently
simple and traditional means of importance sampling work well enough already.
For some rendering workflows this might already be the case for about every
possible scene, especially if low noise for smooth areas is important right from
the start and where the missing stratisfication hurts a lot.

• MLT poses somewhat higher constraints on a rendering system than other algo-
rithms have.
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